Boundedness of Fano Threefolds with Log-terminal Singularities of given Index

نویسندگان

  • ALEXANDR BORISOV
  • V. Alexeev
چکیده

We prove that all Fano threefolds with log-terminal singularities of given index belong to finitely many families. This result was previously obtained by the author in the case of unipolar Fano varieties. [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness theorem for Fano log-threefolds

The main purpose of this article is to prove that the family of all Fano threefolds with log-terminal singularities with bounded index is bounded.

متن کامل

Boundedness of Spherical Fano Varieties

Classically, G. Fano proved that the family of (smooth, anticanonically embedded) Fano 3-dimensional varieties is bounded, and moreover provided their classification, later completed by V.A. Iskovskikh, S. Mukai and S. Mori. For singular Fano varieties with log terminal singularities, there are two basic boundedness conjectures: Index Boundedness and the much stronger ǫ-lt Boundedness. The ǫ-lt...

متن کامل

The Cone of Effective Divisors of Log Varieties after Batyrev

In [Bat92] Batyrev studied the cone of pseudo-effective divisors on Q-factorial terminal threefolds and its dual cone, the cone of nef curves. Given a uniruled Q-factorial terminal threefold X , and an ample divisor H on X , he showed that the effective threshold of H (see Definition 1.5 below) is a rational number. Using similar arguments, Fujita generalized this result to log terminal pairs (...

متن کامل

An Optimal Boundedness on Weak Q-fano Threefolds

Let X be a terminal weak Q-Fano threefold. We prove that P −6(X) > 0 and P−8(X) > 1. We also prove that the anticanonical volume has a universal lower bound −K X ≥ 1/330. This lower bound is optimal.

متن کامل

On the Extendability of Projective Surfaces and a Genus Bound for Enriques-fano Threefolds

We introduce a new technique, based on Gaussian maps, to study the possibility, for a given surface, to lie on a threefold as a very ample divisor with given normal bundle. We give several applications, among which one to surfaces of general type and another one to Enriques surfaces. For the latter we prove that any threefold (with no assumption on its singularities) having as hyperplane sectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999